32 research outputs found

    Ionospheric topside models compared with experimental electron density profiles

    Get PDF
    Recently an increasing number of topside electron density profiles has been made available to the scientific community on the Internet. These data are important for ionospheric modeling purposes, since the experimental information on the electron density above the ionosphere maximum of ionization is very scarce. The present work compares NeQuick and IRI models with the topside electron density profiles available in the databases of the ISIS2, IK19 and Cosmos 1809 satellites. Experimental electron content from the F2 peak up to satellite height and electron densities at fixed heights above the peak have been compared under a wide range of different conditions. The analysis performed points out the behavior of the models and the improvements needed to be assessed to have a better reproduction of the experimental results. NeQuick topside is a modified Epstein layer, with thickness parameter determined by an empirical relation. It appears that its performance is strongly affected by this parameter, indicating the need for improvements of its formulation. IRI topside is based on Booker's approach to consider two parts with constant height gradients. It appears that this formulation leads to an overestimation of the electron density in the upper part of the profiles, and overestimation of TEC

    Comparisons of experimental topside electron concentration profiles with IRI and NeQuick models

    Get PDF
    A critical part of the vertical ionospheric electron concentration profile is the region above its maximum (topside ionosphere) and many attempts have been made to model this region because of the limited experimental data available. Recently, many topside electron concentration profiles obtained with the Intercosmos-19 satellite became accessible through the Internet. The period analyzed corresponds to March 1979 - December 1980, a time interval of high solar activity. The present work describes the comparison of these profiles with the IRI and NeQuick model profiles obtained by driving the models with the values of the maximum electron concentration and its height given by the satellite

    Validation of a method for ionospheric electron density reconstruction by means of vertical incidence data during quiet and storm periods

    Get PDF
    A preliminary validation of the technique developed using the NeQuick ionospheric model and the «effective ionization parameter» Az, based on vertical total electron content data ingestion, was carried out in a previous study. The current study was performed to extend the analyzed conditions and confirm the results. The method to validate this technique is based on a comparison between hourly F2 peak values measured with Vertical Incidence (VI) soundings and those calculated with the new technique. Data corresponding to different hours and seasons (equinox, summer solstice, and winter solstice) during the period 2000-2003 (high and medium solar activity conditions) were compared for all available ionosonde stations. The results show a good agreement between foF2 and hmF2 values obtained with the new technique and measurements from vertical incidence soundings during quiet and storms conditions.European Community Fifth Framework Programm

    Comparison of analytical functions used to describe topside electron density profiles with satellite data

    Get PDF
    Electron density models of the ionosphere use different analytical formulations for the electron density vertical profile in the topside. The present paper compares some single-layer topside analytical descriptions (Chapman, Epstein, modified Epstein used in the NeQuick model) with experimental topside profiles obtained from measurements of IK19 and ISIS2 satellites. The limits of height range and shape for each formulation are described and analyzed and suggestions for the use of multiple layers solution to reproduce experimental results are given

    \u3cem\u3eIonoSeis\u3c/em\u3e: A Package to Model Coseismic Ionospheric Disturbances

    Get PDF
    We present the framework of the modeling package IonoSeis. This software models Global Navigation Satellite System (GNSS) derived slant total electron content (sTEC) perturbations in the ionosphere due to the interaction of the neutral atmosphere and charged particles in the ionosphere. We use a simplified model to couple the neutral particle momentum into the ionosphere and reconstruct time series of sTEC perturbations that match observed data in both arrival time and perturbation shape. We propagate neutral atmosphere disturbances to ionospheric heights using a three-dimensional ray-tracing code in spherical coordinates called Windy Atmospheric Sonic Propagation (WASP3D), which works for a stationary or non-stationary atmospheric models. The source of the atmosphere perturbation can be an earthquake or volcanic eruption; both couple significant amounts of energy into the atmosphere in the frequency range of a few Millihertz. We demonstrate the output of the code by comparing modeled sTEC perturbation data to the observed perturbation recorded at GNSS station BTNG (Bitung, Indonesia) immediately following the 28 September 2018, Sulawesi-Palu earthquake. With this framework, we provide a software to couple the lithosphere, atmosphere, and ionosphere that can be used to study post-seismic ionospherically-derived signals

    Effects of gradients of the electron density on Earth-space communications

    Get PDF
    This paper is a review of the main results achieved in the framework of COST 271 Action Working Group 4, under the activities of the Work Package 4.4. The first topic treated deals with the influence of ionospheric space and time gradients in the slant to vertical and vertical to slant ionospheric delay conversion when the thin shell approximation of the ionosphere is assumed and with the effects of geomagnetic activity on the errors that this conversion introduces. The second topic is related to the comparison of ionospheric topside models with experimental electron density profiles to check the ability of the models to reproduce the observed topside shape and characteristics that determine the electron density gradients. The analysis that has been done allows pointing out the changes needed to improve the models. Finally a third topic covers a model simulation study of the total electron content that can be encountered in GPS-to-geostationary satellite ray paths. It takes into account that the propagation paths for such satellite-to-satellite links are very long and they have the potential to intersect regions of the ionised atmosphere where the electron density is high when the geometry is close to eclipse

    A model assisted ionospheric electron density reconstruction method based on vertical TEC data ingestion

    Get PDF
    A technique to reconstruct the electron density of the ionosphere starting from total electron content values has been developed using the NeQuick ionospheric electron density model driven by its effective ionization parameter Az. The technique is based on the computation of Az values for a suitable worldwide grid of points. A simple way to obtain relevant Az grids is to use global vertical Total Electron Content (TEC) maps to define for each grid point as Az value, the one that minimizes the difference between the experimental and the modeled vertical TEC. Having a global grid of Az values it is possible to compute the electron density at any point in the ionosphere using NeQuick. As a consequence, slant TEC values for specific ground station to satellite links or ionosphere peak parameter values at any location can be calculated. The results of the comparisons between experimental and reconstructed slant TEC as well as experimental and reconstructed peak parameters values indicate that the proposed reconstruction method can be used to reproduce the observed ionosphere in a realistic way.Facultad de Ciencias Astronómicas y Geofísica

    A 2015 International Geomagnetic Reference Field (IGRF) candidate model based on <i>Swarm’s</i> experimental absolute magnetometer vector mode data

    Get PDF
    International audienceEach of the three satellites of the European Space Agency Swarm mission carries an absolute scalar magnetometer (ASM) that provides the nominal 1-Hz scalar data of the mission for both science and calibration purposes. These ASM instruments, however, also deliver autonomous 1-Hz experimental vector data. Here, we report on how ASM-only scalar and vector data from the Alpha and Bravo satellites between November 29, 2013 (a week after launch) and September 25, 2014 (for on-time delivery of the model on October 1, 2014) could be used to build a very valuable candidate model for the 2015.0 International Geomagnetic Reference Field (IGRF). A parent model was first computed, describing the geomagnetic field of internal origin up to degree and order 40 in a spherical harmonic representation and including a constant secular variation up to degree and order 8. This model was next simply forwarded to epoch 2015.0 and truncated at degree and order 13. The resulting ASM-only 2015.0 IGRF candidate model is compared to analogous models derived from the mission's nominal data and to the now-published final 2015.0 IGRF model. Differences among models mainly highlight uncertainties enhanced by the limited geographical distribution of the selected data set (essentially due to a lack of availability of data at high northern latitude satisfying nighttime conditions at the end of the time period considered). These appear to be comparable to differences classically observed among IGRF candidate models. These positive results led the ASM-only 2015.0 IGRF candidate model to contribute to the construction of the final 2015.0 IGRF model

    International Geomagnetic Reference Field: the 12th generation

    Get PDF
    The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, provide the spherical harmonic coefficients, and provide maps of the magnetic declination, inclination, and total intensity for epoch 2015.0 and their predicted rates of change for 2015.0-2020.0. We also update the magnetic pole positions and discuss briefly the latest changes and possible future trends of the Earth’s magnetic fiel

    Détection multi-instruments des perturbations ionosphériques générées par la propagation des tsunamis

    No full text
    Ce travail de thèse analyse les opportunités apportées par la télédétection ionosphérique pour la détection et la surveillance de la propagation des tsunamis. Une approche multi-instrumentale a été développée en utilisant principalement la simulation numérique pour comprendre les conditions dans lesquelles les ondes de gravité induites par la propagation d un tsunami affectent l ionosphère, comment elles peuvent être détectées et quels paramètres du tsunami peuvent être retrouvés dans les observations ionosphériques. Cette étude concerne essentiellement la propagation trans-océanique des tsunamis : environ une heure est nécessaire pour que l onde de gravité se développe et apparaisse dans l ionosphère. Près de la source ce sont surtout les ondes gravito-acoustiques générées par la rupture et le déplacement du sol qui peuvent être observées dès quelques minutes après le séisme. En premier lieu ce travail explore théoriquement les capacités de détection précoce des radars trans-horizon (OTH), grâce au sondage ionosphérique à bas angle d élévation. Une simulation complète de tracé de rayons dans l ionosphère a permis de mettre en évidence la capacité des radars OTH de détecter et suivre la propagation d un tsunami. Le séisme et le tsunami de Tōhoku (Japon) du 11 mars 2011 ont permis d obtenir pour la première fois des images de luminescence atmosphérique à 630:0 nm de l onde de gravité générée par le tsunami. Une modélisation complète du couplage entre océan-atmosphère-ionosphère et de la conséquente variation de luminescence a été mise en oeuvre pour valider les modèles et confirmer le lien entre les observations expérimentales de luminescence et la propagation du tsunami. Deux techniques satellitaires novatrices basées sur la détection passive de signaux GNSS sont étudiées : la réflectométrie et l occultation radio. De futures missions spatiales, utilisant pleinement les signaux des différentes constellations GNSS pourront fournir de nouvelles mesures altimétriques et de TEC sur les océans. La réponse de ces systèmes a été analysée pour l étude de cas du tsunami de Tōhoku. Il a été aussi possible de détecter expérimentalement pour la première fois l onde de gravité générée par le tsunami dans les données des satellites COSMIC. L ensemble de ces techniques de sondage ionosphérique apportent des informations additionnelles sur la propagation des tsunamis et des ondes de gravité et pourront jouer un rôle complémentaire dans les systèmes de surveillance et d alerte des tsunamis.PARIS-BIUSJ-Sci.Terre recherche (751052114) / SudocSudocFranceF
    corecore